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摘要:针对密度峰值聚类算法在变密度数据集上聚类效果不佳且样本分配过程会产生“多米诺骨牌”现象

等问题,提出一种融合类簇生长及边界分配策略的密度峰值聚类算法。该算法利用局部k 近邻信息计算

样本密度和相对距离,进而得到样本决策值。基于样本间距离、密度和近邻关系定义样本间吸引度和生长

半径,结合决策值依次选取类簇中心,提出类簇生长策略。该生长策略从每个类簇中心出发,利用吸引度

和生长半径不断生长当前类簇以获得初始聚类结果。在此基础上,利用已分配类簇和未分配样本间近邻

和距离信息定义邻接度,提出边界分配策略。该分配策略由邻接度将每个未分配样本划分到最合适的类

簇中,不断更新已分配和未分配样本集,直到所有样本分配完成获得最终聚类结果。在16个人工数据集

和10个UCI数据集上与7个算法的比较实验结果表明,所提算法在大部分数据集上的调整兰德系数、标
准化互信息和调整互信息聚类指标均优于对比算法。同时,统计检验结果表明所提算法与对比算法在统

计学上均有显著性差异,具有较好的聚类效果。
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Abstract: Aiming
 

at
 

the
 

problems
 

that
 

the
 

density
 

peak
 

clustering
 

algorithm
 

has
 

a
 

poor
 

clustering
 

effect
 

on
 

variable
 

density
 

datasets
 

and
 

that
 

the
 

"domino"
 

phenomenon
 

will
 

occur
 

in
 

the
 

sample
 

assignment
 

process,
 

a
 

density
 

peak
 

clustering
 

algorithm
 

combining
 

cluster
 

growth
 

and
 

boundary
 

assignment
 

strategy
 

is
 

proposed.
 

The
 

algorithm
 

uses
 

the
 

local
 

k-nearest
 

neighbor
 

information
 

to
 

calculate
 

the
 

sample
 

density
 

and
 

relative
 

distance,
 

and
 

then
 

obtains
 

the
 

sample
 

decision
 

value.
 

Based
 

on
 

the
 

distance,
 

density
 

and
 

neighbor
 

relationship
 

between
 

samples,
 

the
 

attraction
 

degree
 

and
 

growth
 

radius
 

are
 

defined.
 

Combined
 

with
 

the
 

decision
 

value,
 

the
 

cluster
 

centers
 

are
 

selected
 

in
 

turn,
 

and
 

the
 

cluster
 

growth
 

strategy
 

is
 

proposed.
 

Starting
 

from
 

each
 

cluster
 

center,
 

this
 

strategy
 

grows
 

the
 

current
 

cluster
 

by
 

using
 

the
 

attraction
 

degree
 

and
 

the
 

growth
 

radius
 

to
 

obtain
 

the
 

initial
 

clustering
 

result,
 

on
 

the
 

basis
 

of
 

which
 

the
 

adjacency
 

degree
 

is
 

defined
 

by
 

using
 

the
 

nearest
 

neighbor
 

and
 

distance
 

information
 

between
 

the
 

assigned
 

clusters
 

and
 

the
 

unassigned
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samples,
 

and
 

the
 

boundary
 

assignment
 

strategy
 

is
 

proposed.
 

The
 

assignment
 

strategy
 

divides
 

each
 

unassigned
 

sample
 

into
 

the
 

most
 

appropriate
 

cluster
 

by
 

the
 

adjacency
 

degree,
 

and
 

updates
 

the
 

assigned
 

and
 

unassigned
 

sample
 

sets
 

continuously
 

until
 

all
 

the
 

samples
 

are
 

assigned
 

to
 

obtain
 

the
 

final
 

clustering
 

result.
 

Compared
 

with
 

7
 

algorithms
 

on
 

16
 

synthetic
 

datasets
 

and
 

10
 

UCI
 

datasets,
 

experimental
 

results
 

show
 

that
 

the
 

proposed
 

algorithm
 

is
 

superior
 

to
 

the
 

comparison
 

algorithms
 

in
 

adjusted
 

rand
 

index,
 

normalized
 

mutual
 

information
 

and
 

adjusted
 

mutual
 

information
 

on
 

most
 

datasets.
 

At
 

the
 

same
 

time,
 

the
 

statistical
 

test
 

results
 

show
 

that
 

the
 

proposed
 

algorithm
 

and
 

the
 

comparison
 

algorithm
 

have
 

statistically
 

significant
 

differences.
 

The
 

proposed
 

algorithm
 

has
 

a
 

better
 

clustering
 

effect.
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1 引 言

聚类分析是机器学习和模式识别领域的重要研究问题,它旨在将给定数据中的样本划入不同类簇,使得

同一类簇中的样本尽可能相似,而不同类簇中的样本具有较大差异[1]。鉴于聚类分析的快速发展,已经涌现

出各种类型的聚类算法,它们在生产生活的各个方面具有广泛的应用价值[2-6]。

2014年,Science期刊上发表了一篇名为基于快速搜索和发现密度峰值的聚类算法的研究成果,简称密

度峰值聚类(Density
 

Peak
 

Clustering,
 

DPC)[7]。它具有聚类过程无需迭代、算法执行过程简单高效和可以

识别任意形状的类簇等优点,得到了国内外学者的广泛关注和研究[8-9]。随着研究的深入,DPC算法的问题

逐渐显现[10],如:该算法在变密度数据集上聚类效果不佳,容易将类簇中心全部定位在高密度类簇中;分配

策略容易出现因先分配样本出错导致后续样本分配均发生错误的“多米诺骨牌”现象。
为了解决DPC算法存在的问题,众多学者提出了多种改进策略。在提高变密度数据集聚类性能方面,

DING等[11]提出了基于方差的DPC算法,该算法将样本的方差与密度计算相融合解决原始DPC算法无法

识别低密度簇的问题。YU等[12]提出了基于加权局部密度序列和最近邻分配的DPC算法
 

(Density
 

Peaks
 

Clustering
 

based
 

on
 

weighted
 

local
 

density
 

Sequence
 

and
 

nearest
 

neighbor
 

Assignment,
 

DPCSA),该算法将

k近邻内外样本与密度计算相结合实现类簇划分。LI等[13]提出基于树结构的DPC算法,该算法将数据集

划分成多个子树,在每个子树中获得类簇中心以发现低密度类簇。ZANG等[14]提出了基于上级节点和模糊

关联准则的DPC算法,该算法利用模糊关联准则构造连通子图以获得变密度数据集中各个类簇的结构;

HASSAN等[15]提出了基于样本流行度的峰值聚类算法(Popularity
 

Peak
 

Clustering,
 

PPC),该算法基于样

本的近邻信息定义样本的流行度,使用流行度代替密度,以找到低密度类簇的中心。在改进样本分配策略方

面,GUO等[16]提出了具有连通性估计的DPC算法(Density
 

Peak
 

Clustering
 

with
 

Connectivity
 

Estimation,
 

DPC-CE),该算法利用样本构建近邻图,使用图的连通性进行样本分配,一定程度上避免了“多米诺骨牌”现
象的发生。GUAN等[17]提出了基于关联度转移方法的局部密度峰快速分层聚类算法(Fast

 

Hierarchical
 

Clustering
 

of
 

Local
 

Density
 

Peaks
 

via
 

an
 

association
 

degree
 

transfer
 

method,
 

FHC-LDP),该算法根据局部

密度峰将数据集划分成不同小簇,再使用层次聚类聚合小簇,避免样本的错误分配。HOU等[18]提出了结合

DBSCAN算法的DPC算法(DBSCAN-DPC),该算法首先从类簇中心出发,使用DBSCAN算法生成初始

簇,然后根据相邻样本间的关系对初始簇进行扩展得到最终类簇。GUO等[19]提出了基于局部中心和改进

连通核的DPC算法(Density
 

Peak
 

clustering
 

by
 

local
 

centers
 

and
 

Improved
 

Connectivity
 

Kernel,
 

ICKDP),
该算法在排除无关点影响下选择局部类簇中心进行聚类,并利用改进的连通核计算局部中心间的连通距离,
提高算法在特定数据集上的样本分配准确性。尽管上述改进算法在一定程度上解决了DPC算法存在的问

题,但这些算法没能充分考虑样本间的密度信息和相互关系,且多数改进算法的样本分配策略仅从单一近邻

方面进行考虑,在一些结构相对复杂或类簇间存在相互交叉区域的数据集上往往不能取得较好的聚类结果。
基于上述分析,为进一步提高DPC算法的性能,提出融合类簇生长及边界分配策略的密度峰值聚类算

法(Density
 

Peak
 

Clustering
 

combining
 

Cluster
 

growth
 

and
 

Boundary
 

assignment
 

strategy,
 

CBDPC)。

CBDPC算法使用k近邻定义样本密度和相对距离,进而获得样本决策值,以充分反映样本所处区域的局部
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结构。利用决策值依次选择类簇中心,并基于样本间近邻、密度和距离关系不断从类簇中心出发扩展当前类

簇,使得类簇可以按照条件生长。该生长策略可避免在聚类过程中无法找到低密度类簇,准确获得类簇的初

始结构信息。针对生长后剩余的未分配样本,定义它们与已分配类簇间的邻接度,据此将它们依次分配到最

合适的类簇中,不断更新已分配样本和未分配样本集,使得后续样本可使用周围多个近邻样本的最新类簇信

息进行分配,直到未分配样本集为空,完成聚类过程。该分配策略可避免发生“多米诺骨牌”现象,提高样本

分配准确性。大量数据集上实验结果表明,CBDPC算法与DPC及其改进算法相比,性能更加优越且在统计

学上具有显著性差异。

2 DPC算法

2.1 DPC算法的聚类流程

DPC算法基于类簇中心被低密度样本包围和类簇中心之间相距较远这两点假设,首先计算样本密度和

相对距离,再结合密度与相对距离选择各个类簇的中心,最后将剩余样本分配到它的高密度最近邻所在类簇

中。基于上述聚类过程,DPC算法首先计算数据集D 中任意样本xi 的密度如下:

ρi=∑
xj≠xi

χ(dij -dc),χ(x)=
1,x<0  ,

0,x≥0  ,{ (1)

ρi=∑
xj≠xi

exp(- dij

dc( )
2

)  , (2)

其中,dij 为样本xi 和xj 之间的欧氏距离,dc 为截断距离,这是算法需要考虑数据集的全局信息而给定的

参数。一般地,对于样本数较多的数据集,使用式(1)计算样本密度,反之使用式(2)计算样本密度。
其次,利用样本的密度与距离关系获得样本xi 的相对距离:

δi=
min

xj:ρj>ρi
 

dij,ρi ≠max(ρ)  ,

max
xj≠xi

 

dij,ρi=max(ρ)  ,{ (3)

其中,ρ 为所有样本密度构成的集合。
当获得每个样本的密度和相对距离后,计算样本xi 的决策值:

γi=ρiδi  。 (4)

  把决策值按照大小降序排列,一次性选择排序靠前的样本作为各个类簇的中心,并赋予不同的标签。最

后,将剩余样本归为它们的高密度最近邻所属的类簇,完成聚类过程。

2.2 DPC算法的问题分析

DPC虽然具有一些优点,但它也同样存在一些问题。DPC算法的问题主要集中于以下两个方面:
(1)

 

DPC算法无法在变密度数据集的低密度类簇上发现类簇中心,容易将类簇中心全部定位在高密度

类簇上,导致算法在变密度数据集上聚类效果不佳。以Jain数据集[20]为例,叙述DPC算法的上述问题。绘

制Jain数据集的真实分布图和DPC算法在该数据集上发现的类簇中心如图1所示,图中不同形状代表不同

类簇,黑色五角星为类簇中心。
从图1(a)可以发现,Jain数据集包含的两个类簇密度分布情况不同,位于上方的流形类簇密度要明显

低于下方流形类簇的密度,其是一个典型的变密度数据集。从图1(b)可以发现,DPC算法在下方的高密度

类簇中选取到了两个类簇中心,无法在上方的低密类簇中选取到类簇中心,这是由于DPC算法的密度定义

方式和一次性选取全部中心的类簇中心选择策略只从全局角度进行考虑,忽略了样本的局部信息和样本间

的近邻、密度和距离关系,使其无法分辨变密度数据集不同密度类簇之间的结构差异,从而在该数据集上获

得了较差的聚类结果。
(2)

 

DPC算法容易出现一个样本分配错误而后续样本均被错误分配的“多米诺骨牌”现象,导致聚类效

果不佳。以Pathbased数据集[20]为例,叙述DPC算法“多米诺骨牌”现象的发生机制。绘制Pathbased数据

集的真实分布图和DPC算法在该数据集上的聚类结果如图2所示,图中不同形状代表不同类簇,黑色五角
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星为类簇中心。

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

0.1
0 0

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

y

(a)  Jain数据集 (b)  DPC算法找到的中心

图1 以Jain数据集叙述DPC算法的问题

从图2(a)可以发现,Pathbased数据集拥有3个类簇,最外层的流形类簇包含中间两个球形类簇,其是

一个类簇之间相互交叉的数据集。图2(b)为DPC算法在该数据集上所得聚类结果,从图2(b)可知,DPC
算法在该数据集的3个类簇上都得到了正确的类簇中心,但将部分样本错误分配。具体地,样本A 是虚线

圈中的样本中密度最大的样本,样本C 和样本A 同属于最外层的流形类簇,样本B 与样本A 属于不同类

簇,且样本B 和C 的密度都大于A 的密度。由于样本A 和B 之间的距离小于样本A 和C 之间的距离,按
照DPC算法仅从单一近邻角度进行考虑的分配策略,样本A 被错分到样本B 所在类簇,进而导致虚线中的

样本都被错分,这就是“多米诺骨牌”现象。
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(a) Pathbased数据集 (b) DPC算法“多米诺骨牌”现象

图2 以Pathbased数据集叙述DPC算法的问题

3 CBDPC算法

DPC算法无法有效聚类变密度数据集,且在样本分配过程中易发生“多米诺骨牌”现象,针对上述问题,
提出CBDPC算法。以包含3个类簇的变密度数据集D3cno123[20]为例,图3给出了CBDPC算法框架示

意图。

3.1 类簇生长

对于数据集D 中的任意样本xi,利用k近邻计算它的密度为

ρi=
k

∑
xj∈Nk(xi)

 

dij

  , (5)

其中,Nk(xi)={xj ∈D|dij ≤dik}为样本xi 的k近邻集合,dik 为xi 与离其第k远样本之间的距离。
利用式(5)计算数据集D 中每个样本的密度,可以统一原始DPC算法的密度定义准则,使得算法执行

过程无需考虑样本规模。同时,将样本的密度计算范围控制在k近邻内,较原始DPC算法的密度相比,能准

确捕获样本的局部信息,以有效发现变密度数据集蕴含的局部结构。
当获得每个样本的k近邻密度后,基于样本间的近邻、密度和距离关系定义样本间的吸引度,利用吸引

度来实现类簇生长。为此,首先给出样本xi 和xj 之间的共享近邻:
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(a)输入数据集 (b) 利用密度和相对距离计算决策值

簇中心簇3簇2簇1

δ1 δ2 δn γn

ρ1
γ1
γ2

ρ2 ρn

未分配样本

(c) 利用决策值选择第1个
类簇中心并开始类簇1的生长

(d)利用决策值选择第2个
类簇中心并开始类簇2的生长

(e) 利用决策值选择第3个
类簇中心并开始类簇3的生长

(f) 分配剩余样本
获得最终聚类结果

图3 CBDPC算法框架图

SNN(xi,xj)=Nk(xi)∩Nk(xj)  。 (6)

  样本间的共享近邻包含了样本之间的近邻关系,若样本之间的共享近邻样本数越多,样本同属于一个类

簇的概率也就越大。
在获得了样本间的共享近邻之后,计算样本之间的密度关系值:

r(xi,xj)=
2(ρiρj)1

/2

ρi+ρj
  。 (7)

  同属于一个类簇的样本,应该具有相同的密度分布情况,它们的密度大小比较相近。若样本间的密度越

接近,由式(7)所定义的密度关系值也就越大,更能体现它们同属一类的程度。
基于样本间的近邻、密度和距离关系定义样本间的吸引度如下:

A(xi,xj)=
|SNN(xi,xj)|+r(xi,xj)

dij
  , (8)

其中,|SNN(xi,xj)|为样本xi 和xj 之间的共享近邻样本数。由样本间的近邻、密度和距离关系可知,样
本间吸引度越大,它们同属一类的概率也就越大。

CBDPC算法不再如DPC算法一次性选择所有的类簇中心,而是使用式(3)和式(4)计算每个样本的相

对距离和决策值后,依次选择决策值最大的样本作为中心进行类簇生长。后续实验表明,该方法可结合样本

局部k近邻信息来避免在变密度数据集的高密度类簇中得到多个中心而无法获得低密度类簇中心的问题,
且可生长到期望的类簇数目。具体地,CBDPC算法从每个类簇中心出发开始一个类簇的生长,在类簇生长

过程中根据当前样本xw 与类簇中心xm 之间的密度关系定义xw 的生长半径如下:

dr(xw)=ρw

ρm
dwk  , (9)

其中,dwk 为xw 与离其第k远样本之间的距离。
为直观展现生长半径的优势,图4给出了在同一个类簇中处于不同位置的样本,其生长半径内所包含的

样本情况。
通过图4可以发现,样本A 位于类簇的内部区域,其密度高于位于边界区域的样本B。当近邻数k为4

时,通过式(9)计算它们的生长半径,获得生长半径内的样本集合后,可知样本A 的生长半径内有4个样本,
而样本B 的生长半径内只有1个样本。上述现象说明式(9)可根据样本间密度关系获得生长半径,使得高

密度样本的生长半径内可以包含更多样本,而位于类簇边界区域的低密度样本,其生长半径内包含较少的样

本,以适应样本所属区域的局部结构,避免在类簇生长过程中类簇交叉区域或在真实分布中属于其它类簇内

的样本对当前聚类结果的影响。
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在获得了xw 的生长半径和生长半径内的样本集M 后,对于任意xt∈M ,若xt 满足如下吸引度条件,
则将其纳入当前生长的类簇中:

A(xw,xt)>α1Am(xw,M)  , (10)

B

A

图4 生长半径示意图

其中,Am(xw,M)代表xw 和生长半径内样本的平均吸引度,α1 为生长系

数。通过大量数据集实验可知,当α1 为0.8时,算法可取得较好的聚类结

果。式(10)利用样本间的吸引度进一步降低聚类过程中其它类簇内样本的

影响。
循环上述步骤直到遍历到期望数目的类簇中心,结束类簇生长过程,获

得初始聚类结果。该生长过程使用生长半径和吸引度发掘样本间的近邻、
密度和距离关系,获得不同密度类簇正确的局部结构信息,提升聚类的准确

性。综上,算法1给出了类簇生长过程的伪代码。
算法1 类簇生长。
输入:数据集D,决策值,近邻数k,类簇数目c,样本密度ρ,吸引度A
输出:初始标签L
①

 

i=0//
 

i是当前的类簇数目

②
 

L=zeros(1,
 

n)//初始化样本标签为0,n 为样本数

③
 

While
 

i≤c
 

do
④

 

  获得决策值最高的样本
 

xm 作为类簇中心

⑤
 

  L(xm)=i+1;//将样本xm 的标签标记为i
⑥

 

  初始化队列Q 为空集,将xm 添加到队列Q 中

⑦
 

  While
  

Q 非空
 

do
⑧

 

   
 

选择Q 中密度最大的样本xw

⑨
 

   
 

利用式(9)计算xw 的生长半径dr(xw)

�10
 

   
 

获得xw 生长半径内的样本集合M
�11

 

   
 

For
  

M 中每个标签为0的样本xt
 do

�12
 

     
 

If
 

xt 满足式(10)
  

then
�13

 

      
 

L(xt)=L(xm);//将样本xt 的标签标记为i
�14

 

      
 

在Q 中添加xt

�15
 

     
 

End
 

if
�16

 

   
 

End
 

for
�17

 

    在Q 中删除xw

�18
 

  End
 

while
�19

 

End
 

while

0
0
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(a) D3cno123数据集 (b) 类簇生长 (c) DPC算法 

图5 类簇生长及DPC算法在D3cno123数据集上的聚类结果

图5给出了类簇生长过程及原始DPC算法在D3cno123数据集上获得的聚类结果,图中不同形状代表
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不同的类簇,圆点表示类簇生长后剩余未分配的样本。
结合图3和图5可以看出,CBDPC算法的类簇生长策略按照顺序准确识别了该数据集的3个类簇,获

得了较为完整的初始聚类结果,而DPC算法在上方的高密度类簇中找到了2个类簇中心,未能发现右侧低

密度类簇的中心,获得了较差的聚类结果。上述结果说明,类簇生长策略可结合样本k 近邻信息依次得到

变密度数据集所有类簇准确的中心,并利用样本间的密度近邻关系获得不同密度类簇正确的初始结构,而

DPC算法仅使用样本全局结构信息来识别类簇中心,未考虑样本间密度差异,所以聚类结果不理想。

3.2 边界分配

在类簇生长过程结束以后,仍可能有一些未分配的样本,这些样本通常位于类簇边界或类簇之间的交叉

区域,称之为边界样本。实际上,这些边界样本的正确分配对提升聚类的性能至关重要。为了将上述边界样

本分配到最合适的类簇中,基于样本与初始聚类结果中已分配类簇(类簇生长过程获得的类簇)间的距离和

近邻关系,定义它们之间的邻接度,基于该邻接度依次分配边界样本。
具体地,对于数据集D 中任意一个未分配的边界样本x,定义它的分配近邻数为

f=Rou(α2k)  , (11)
其中,Rou(•)表示对数据四舍五入,α2 为近邻系数。通过大量数据集实验可知,当α2 为1.5时,算法可取

得较好的聚类结果。使用式(11)适当扩大边界样本的近邻数,以获得更全面的类簇信息。
在已分配的类簇中获得x 的分配近邻Nf(x),若它包含p 个类簇,并且第t(t=1,2,…,p)个类簇Ct

包含λt(λ1+λ2+…+λp =f)个Nf(x)中的样本,则x 与Ct 之间的邻接度定义为

S(x,Ct)=
∑

xj∈Ct∧xj∈Nf
(x)
exp(- dij

k+|SNN(x,xj)|)
λt

  。 (12)

  式(12)从共享近邻和距离角度刻画了未分配样本x 和已分配类簇Ct 之间的相互关系,由此定义二者的

邻接度来对该关系进行度量。若样本x 与其分配近邻中属于类簇Ct 的样本间距离越小,并且x 与上述样本

间的共享近邻样本数越多,则样本x 和类簇Ct 之间的邻接度就越大。具体而言,式(12)的分子部分为样本

x 和其分配近邻中属于类簇Ct 的样本之间总的关系值,除以分母λt(λt 为x 的分配近邻中属于类簇Ct 的

样本数)得到一种平均关系值。基于该平均关系值来刻画样本x 和类簇Ct 之间的邻接度,可以更好地利用

样本x 周围的局部信息,提高样本分配的准确性。
对于每一个未分配的边界样本x,当得到它与已分配类簇间的邻接度后,依据如下公式将其分配到最合

适的类簇中:

L(x)=L(Cv),v=arg
 

max
t

{S(x,Ct)}  。 (13)

  利用图6展示式(12)所提邻接度的优势。图6中,在近邻数k为4,分配近邻数f 为6的情况下,样本1
是位于类簇C1 和C2 间的待分配低密度样本,在真实类簇分布中属于C1。若采用原始DPC算法仅从单个

近邻角度进行考虑的分配策略,由于样本1和更高密度样本3之间的距离d13 小于样本1和更高密度样本2
之间的距离d12,样本1会被错误分配给C2;若采用式(12)计算它与周围已分配类簇C1 和C2 间的邻接度

S(1,C1)和S(1,C2),由于该邻接度计算方式充分考虑了样本间的距离和样本周围多个近邻间关系,所以

可得S(1,C1)大于S(1,C2),则样本1被正确分配到C1 中,提高了聚类准确率。

C1 C2

d13=0.143 0,
S(1,C1)=0.961 1
d12=0.156 5,
S(1,C2)=0.954 6

1
2

3

图6 利用邻接度进行样本分配
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在实际的边界分配过程中,CBDPC算法按照密度从大到小的顺序分配边界样本。当每一个边界样本分

配完毕后,不断动态更新已分配样本和未分配样本集合,使后续的边界样本分配过程可以使用待分配样本周

围多个近邻样本所包含的最新类簇信息,以获得样本间更加完善的距离和近邻关系,避免“多米诺骨牌”现象

的发生,提升边界分配的准确性。综上,算法2给出了边界分配过程的伪代码。
算法2 边界分配。
输入:数据集D,初始标签L,近邻数k
输出:最终标签L
①

 

选取所有标签为零的样本构成未分配边界样本集合B
②

 

选取所有标签非零的样本构成已分配样本集合Y
③

 

While
  

B 非空
 

do
④

 

  
 

选择B 中密度最大的样本x
⑤

 

  
 

在Y 中获得x 的分配近邻

⑥
 

  
 

利用式(12)计算x 与分配近邻所含类簇间的邻接度

⑦
 

  
 

利用式(13)获得邻接度最大的类簇Cv

x
0
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
y

图7 边界分配策略在D3cno123数据集上所得最终结果

⑧
 

  
 

L(x)=L(Cv)//更新x 的标签

⑨
 

  
 

在Y 中添加x
�10

 

  在B 中删除x
�11

 

End
 

while
图7给出了边界分配策略在D3cno123数据集

上获得的最终聚类结果。从图7可以看出,CBDPC
算法的边界分配策略将图5(b)中类簇生长过程后

所有未分配的边界样本都较准确地分配到了最合

适的类簇中,取得了与图5(a)中D3cno123数据集

的真实分布十分接近的结果。反观图5(c)中原始

DPC算法的聚类结果,由于识别到了错误的类簇中心,且仅从单一近邻角度进行样本分配,无法准确反映样

本所属区域的局部结构,导致在中间和右侧的类簇之间发生了“多米诺骨牌”现象,其最终聚类的结果劣于所

提CBDPC算法。

3.3 算法聚类流程及时间复杂度分析

算法1和算法2分别给出了类簇生长和边界分配策略,综合这两个算法步骤来实现CBDPC算法的完

整聚类过程,具体算法步骤见算法3。
算法3 CBDPC算法。
输入:数据集D,近邻数k,类簇数目c
输出:最终标签L
①

 

对数据集D 归一化

②
 

利用式(5)计算样本密度

③
 

利用式(3)计算相对距离

④
 

利用式(4)计算样本决策值

⑤
 

利用式(8)计算样本间的吸引度

⑥
 

利用算法1获得初始标签

⑦
 

利用算法2获得最终标签L
假设数据集D 中的样本数目为n,对数据归一化并计算样本密度的时间复杂度为O(n2);计算样本相

对距离和决策值的时间复杂度为O(n2);计算样本间吸引度的时间复杂度为O(n2);利用算法1获得类簇

的初始标签的时间复杂度为O(n);利用算法2分配边界样本的时间复杂度为O(n)。综上所述,CBDPC
总的时间复杂度为O(n2)。
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4 实验结果及分析

4.1 实验设置

为了验证所提CBDPC算法的聚类效果,在16个人工数据集[20]和10个UCI数据集[21]上进行了实验,
各数据集的详细信息分别见表1和表2。其中,人工数据集包含变密度和类簇交叉等多种复杂类型,UCI数

据集来自生产生活的多方面,使用它们进行实验可全面展示算法性能。
表1 人工数据集

数据集 样本数 数据维度 类簇数 数据类型 数据集 样本数 数据维度 类簇数 数据类型

2d4c2 863 2 4 变密度 Xclara 3
 

000 2 3 类簇交叉

Ls 1
 

725 2 6 流形结构 DS850 850 2 5 变密度、类簇交叉

Donut2 1
 

000 2 2 流形结构 D3cno123 715 2 3 变密度、类簇交叉

Complex9 3
 

031 2 9 流形结构 Compound 399 2 6 变密度、类簇交叉

DB 629 2 4 流形结构 Pathbased 300 2 3 变密度、类簇交叉

R15 600 2 15 类簇交叉 Complex8 2
 

551 2 8 变密度、流形结构

D13 588 2 13 流形结构 Jain 373 2 2 变密度、流形结构

S1 5
 

000 2 15 类簇交叉 Disk6000n 6
 

000 2 2 流形结构

表2 UCI数据集

数据集 样本数 数据维度 类簇数 应用领域 数据集 样本数 数据维度 类簇数 应用领域

Libras 360 90 15 运动识别 DNA 2
 

000 180 3 医学

Wine 178 13 3 农业物理学 Heart 303 13 2 医学

Sonar 208 60 2 物理学与化学 Seeds 210 7 3 农业

Pima 768 8 2 医学 Thyroid 215 5 3 医学

Haberman 306 3 2 医学 Vote 435 16 2 社会科学

同时,为了客观评估所提 CBDPC算法性能优劣,与 DPC[7]、DPCSA[12]、PPC[15]、DPC-CE[16]、FHC-
LDP[17]、DBSCAN-DPC[18]和ICKDP[19]算法相比较,其中DPC为原始算法,其余6个算法均是DPC的改进

算法,DPCSA和PPC算法重在提升原始DPC算法在变密度数据集上的聚类性能,DPC-CE、FHC-LDP、

DBSCAN-DPC和ICKDP算法重在解决原始DPC算法的样本分配问题,避免“多米诺骨牌”现象的发生。
聚类的评 价 指 标[22]采 用 标 准 化 互 信 息(Normalized

 

Mutual
 

Information,
 

NMI)、调 整 兰 德 系 数

(Adjusted
 

Rand
 

Index,
 

ARI)和调整互信息(Adjusted
 

Mutual
 

Information,
 

AMI),各聚类指标的取值范围

在-1~1之间,值越接近1说明算法的聚类效果越优秀。各指标的计算公式如下:

NMI=
2I(T,L)

H(T)+H(L)  
, (14)

ARI=
R(T,L)-E(R(T,L))

max(R(T,L))-E(R(T,L))  
, (15)

AMI=
I(T,L)-E(I(T,L))

max(H(T),H(L))-E(I(T,L))  
, (16)

其中,T 为数据集的真实标签,L 为聚类所得标签,I(T,L)为T 和L 间的互信息,H(T)和 H(L)为T
和L 间熵,R(T,L)为T 和L 间的兰德系数,E(•)为求期望,max(•)为取最大值。

公平起见,除了DPCSA和DPC-CE算法不需参数外,其余均利用网格搜索方法进行参数调优,在一定范围

内选择使算法聚类效果最好的参数值。具体地,CBDPC的参数k在[5,60]内取值,步长为1;FHC-LDP算法的

参数k在[1,50]内取值,步长为1;ICKDP算法的参数k根据数据集的规模在一定范围内取值,步长为1;PPC
算法的参数k在[1,50]内取值,步长为1;DBSCAN-DPC算法的参数ε和k分别在[0.025,0.040]和[4,20]内取

值,步长分别为0.001和1;DPC算法的参数dc 在[0.05,2]内取值,步长为0.01。所有算法的实验环境为

Windows11
 

64位操作系统、i7-12700H处理器、16
 

GB内存和
 

MATLAB
 

R2022b软件。
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4.2 人工数据集上的聚类结果及分析

表3给出了所提CBDPC算法及7种比较算法在16个人工数据集上的聚类结果。表3中,“Arg-”为算

法获得最优结果时的参数值,“-”表明算法无需输入参数,“/”前的数值为DBSCAN-DPC算法的参数k,“/”
后数值为参数ε,各个数据集上的第1和第2指标值分别使用黑体和下划线进行标注。表3中的数据集包

含变密度、流形结构和类簇间相互交叉等多种复杂类型,在这些数据集上进行实验可充分验证算法在复杂结

构数据集上的聚类性能。
表3 人工数据集上的聚类结果

算法
Jain

NMI ARI AMI Arg-
DS850

NMI ARI AMI Arg-
CBDPC 1.000

 

0 1.000
 

0 1.000
 

0 25 1.000
 

0 1.000
 

0 1.000
 

0 5
DPCSA 0.233

 

0 0.042
 

2 0.216
 

7  1.000
 

0 1.000
 

0 1.000
 

0  
FHC-LDP 1.000

 

0 1.000
 

0 1.000
 

0 18 0.995
 

4 0.996
 

6 0.995
 

3 43
ICKDP 1.000

 

0 1.000
 

0 1.000
 

0 6 0.988
 

9 0.991
 

6 0.988
 

6 9
DBSCAN-DPC 1.000

 

0 1.000
 

0 1.000
 

0 20/0.040 0.973
 

8 0.974
 

0 0.958
 

4 20/0.040
PPC 0.645

 

6 0.705
 

5 0.610
 

3 3 0.991
 

7 0.993
 

3 0.991
 

7 17
DPC 0.653

 

1 0.714
 

6 0.618
 

3 0.27 0.983
 

4 0.986
 

1 0.983
 

0 0.27
DPC-CE 0.554

 

7 0.585
 

3 0.515
 

2  0.975
 

2 0.979
 

7 0.974
 

7  

算法
Xclara

NMI ARI AMI Arg-
D3cno123

NMI ARI AMI Arg-
CBDPC 1.000

 

0 1.000
 

0 1.000
 

0 10 0.972
 

4 0.988
 

5 0.971
 

8 33
DPCSA 0.992

 

0 0.995
 

9 0.992
 

0  0.721
 

5 0.668
 

8 0.677
 

8  
FHC-LDP 0.995

 

6 0.998
 

0 0.995
 

6 9 0.910
 

3 0.939
 

1 0.892
 

0 19
ICKDP 0.988

 

8 0.993
 

9 0.988
 

8 17 0.751
 

5 0.689
 

5 0.703
 

6 6
DBSCAN-DPC 0.988

 

8 0.993
 

9 0.988
 

8 20/0.040 0.962
 

1 0.980
 

5 0.957
 

3 20/0.025
PPC 0.997

 

6 0.999
 

0 0.999
 

7 16 0.946
 

8 0.969
 

9 0.938
 

7 3
DPC 0.995

 

6 0.998
 

0 0.995
 

6 1.14 0.783
 

4 0.754
 

1 0.739
 

8 0.09
DPC-CE 0.992

 

0 0.995
 

9 0.992
 

0  0.751
 

5 0.689
 

5 0.703
 

6  

算法
2d4c2

NMI ARI AMI Arg-
Ls

NMI ARI AMI Arg-
CBDPC 1.000

 

0 1.000
 

0 1.000
 

0 14 1.000
 

0 1.000
 

0 1.000
 

0 29
DPCSA 0.993

 

0 0.995
 

9 0.992
 

8  0.759
 

7 0.628
 

2 0.744
 

9  
FHC-LDP 0.993

 

0 0.995
 

9 0.992
 

8 14 1.000
 

0 1.000
 

0 1.000
 

0 45
ICKDP 0.993

 

0 0.995
 

9 0.992
 

8 12 1.000
 

0 1.000
 

0 1.000
 

0 14
DBSCAN-DPC 0.987

 

4 0.991
 

8 0.987
 

0 20/0.040 1.000
 

0 1.000
 

0 1.000
 

0 20/0.040
PPC 1.000

 

0 1.000
 

0 1.000
 

0 33 0.785
 

7 0.646
 

3 0.748
 

6 6
DPC 0.932

 

1 0.955
 

5 0.914
 

0 1.22 0.749
 

1 0.619
 

2 0.688
 

0 0.36
DPC-CE 0.875

 

6 0.864
 

7 0.824
 

2  0.730
 

5 0.626
 

6 0.700
 

2  

算法
Donut2

NMI ARI AMI Arg-
D13

NMI ARI AMI Arg-
CBDPC 0.973

 

5 0.988
 

0 0.973
 

5 7 0.980
 

0 0.970
 

5 0.974
 

0 14
DPCSA 0.966

 

4 0.984
 

0 0.966
 

3  0.852
 

5 0.577
 

9 0.801
 

0  
FHC-LDP 0.966

 

4 0.984
 

0 0.966
 

3 40 0.972
 

3 0.941
 

3 0.967
 

3 6
ICKDP 0.966

 

4 0.984
 

0 0.966
 

3 12 0.958
 

8 0.933
 

3 0.949
 

5 5
DBSCAN-DPC 0.966

 

4 0.984
 

0 0.966
 

3 20/0.030 0.972
 

6 0.949
 

0 0.943
 

4 11/0.034
PPC 0.225

 

4 0.122
 

0 0.185
 

6 50 0.918
 

2 0.805
 

2 0.806
 

1 19
DPC 0.266

 

2 0.177
 

5 0.231
 

3 0.28 0.933
 

0 0.819
 

2 0.919
 

2 1.99
DPC-CE 0.228

 

7 0.101
 

9 0.181
 

5  0.899
 

5 0.720
 

6 0.889
 

8  
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算法
Compound

NMI ARI AMI Arg-
Pathbased

NMI ARI AMI Arg-
CBDPC 1.000

 

0 1.000
 

0 1.000
 

0 10 0.912
 

5 0.929
 

2 0.910
 

1 26
DPCSA 0.843

 

9 0.828
 

4 0.839
 

2  0.731
 

1 0.613
 

3 0.707
 

3  
FHC-LDP 0.855

 

3 0.848
 

3 0.850
 

1 5 0.714
 

4 0.562
 

9 0.604
 

2 8
ICKDP 0.897

 

6 0.843
 

4 0.841
 

6 5 0.511
 

8 0.386
 

0 0.449
 

1 5
DBSCAN-DPC 0.909

 

8 0.855
 

3 0.877
 

2 12/0.040 0.772
 

8 0.775
 

2 0.770
 

5 13/0.028
PPC 0.758

 

6 0.777
 

4 0.715
 

2 1 0.651
 

9 0.607
 

6 0.639
 

2 11
DPC 0.737

 

3 0.546
 

1 0.696
 

8 0.76 0.618
 

5 0.563
 

4 0.600
 

1 0.11
DPC-CE 0.681

 

9 0.461
 

0 0.636
 

6  0.555
 

1 0.459
 

8 0.473
 

0  

算法
Complex9

NMI ARI AMI Arg-
DB

NMI ARI AMI Arg-
CBDPC 1.000

 

0 1.000
 

0 1.000
 

0 35 1.000
 

0 1.000
 

0 1.000
 

0 32
DPCSA 0.711

 

9 0.422
 

1 0.682
 

1  0.453
 

4 0.109
 

6 0.413
 

1  
FHC-LDP 1.000

 

0 1.000
 

0 1.000
 

0 15 1.000
 

0 1.000
 

0 1.000
 

0 18
ICKDP 0.940

 

5 0.868
 

7 0.917
 

4 12 1.000
 

0 1.000
 

0 1.000
 

0 7
DBSCAN-DPC 1.000

 

0 1.000
 

0 1.000
 

0 20/0.040 1.000
 

0 1.000
 

0 1.000
 

0 20/0.040
PPC 0.729

 

7 0.544
 

2 0.708
 

5 22 0.612
 

7 0.429
 

0 0.556
 

1 14
DPC 0.745

 

4 0.609
 

4 0.740
 

2 2.00 0.512
 

0 0.325
 

1 0.459
 

6 0.83
DPC-CE 0.711

 

6 0.448
 

4 0.541
 

5  0.717
 

6 0.469
 

9 0.644
 

3  

算法
Complex8

NMI ARI AMI Arg-
R15

NMI ARI AMI Arg-
CBDPC 0.997

 

6 0.998
 

7 0.997
 

3 32 0.997
 

1 0.996
 

4 0.996
 

9 26
DPCSA 0.758

 

7 0.531
 

1 0.742
 

4  0.989
 

3 0.985
 

7 0.988
 

5  
FHC-LDP 0.950

 

1 0.927
 

4 0.939
 

6 8 0.994
 

2 0.992
 

8 0.993
 

8 37
ICKDP 0.933

 

8 0.920
 

9 0.923
 

7 10 0.994
 

2 0.992
 

8 0.993
 

8 10
DBSCAN-DPC 0.954

 

6 0.941
 

2 0.925
 

7 15/0.029 0.994
 

2 0.992
 

8 0.993
 

8 19/0.040
PPC 0.734

 

8 0.588
 

7 0.704
 

7 48 0.994
 

2 0.992
 

8 0.993
 

8 23
DPC 0.794

 

6 0.703
 

6 0.772
 

1 1.72 0.994
 

2 0.992
 

8 0.993
 

8 1.74
DPC-CE 0.727

 

6 0.576
 

6 0.713
 

3  0.994
 

2 0.992
 

8 0.993
 

8  

算法
S1

NMI ARI AMI Arg-
Disk6000n

NMI ARI AMI Arg-
CBDPC 0.989

 

3 0.989
 

3 0.989
 

2 51 1.000
 

0 1.000
 

0 1.000
 

0 43
DPCSA 0.988

 

0 0.988
 

4 0.986
 

9  0.238
 

8 0.092
 

9 0.241
 

8  
FHC-LDP 0.988

 

4 0.988
 

1 0.988
 

2 23 1.000
 

0 1.000
 

0 1.000
 

0 7
ICKDP 0.988

 

4 0.988
 

1 0.988
 

2 11 0.260
 

0 0.132
 

5 0.263
 

4 22
DBSCAN-DPC 0.988

 

0 0.988
 

4 0.986
 

9 20/0.040 0.931
 

6 0.969
 

4 0.931
 

6 19/0.025
PPC 0.988

 

7 0.988
 

4 0.988
 

6 4 0.168
 

6 0.252
 

5 0.169
 

9 2
DPC 0.989

 

6 0.989
 

7 0.989
 

5 1.58 0.227
 

3 0.312
 

9 0.229
 

0 0.50
DPC-CE 0.988

 

4 0.988
 

1 0.988
 

2  0.123
 

9  0.041
 

0 0.124
 

7

由表3知,CBDPC算法除了在S1数据集以外,在其余15个人工数据集上均取得了最优值,在S1数据

集上的各个聚类指标也处于第2的位置,充分说明了CBDPC算法不但在变密度数据集上聚类效果优越,可
避免样本分配时发生“多米诺骨牌”现象,而且在各种复杂结构类型数据集上也有比较好的性能。虽然

DBSCAN-DPC、FHC-LDP和ICKDP等算法在一些变密度(Jain和2d4c2数据集)和流形数据集(Ls和DB
数据集)上,能够取得和CBDPC算法相同的聚类结果,但这些算法未充分考虑样本的局部结构信息和样本

间的密度关系,导致它们在类簇间存在相互交叉区域的数据集(Xclara、Pathbased和Compound数据集)上
未能取得较好的聚类结果。另外,原始DPC算法在除S1数据集以外的其余15个人工数据集上的聚类结果
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都比较差,说明它无法有效聚类结构复杂的数据集,CBDPC算法在所有数据集上NMI、ARI和AMI的平均

值较原始DPC算法分别提升了0.244
 

2、0.299
 

6和0.265
 

2。
为了直观展现8种算法的聚类效果,图8~图11给出了各算法在 D3cno123、Jain、Compound和

Pathbased数据集上的聚类效果图。图中不同的形状代表不同的类簇,五角星表示类簇中心。图8为各算

法在D3cno123数据集上的聚类效果图。该数据集包含3个类簇且它们之间相互交叉,易引发“多米诺骨

牌”现象。由图8可知,CBDPC算法成功识别到该数据集不同密度的类簇结构,且在边界分配时结合多个近

邻样本间的信息成功避免了“多米诺骨牌”现象的发生。DBSCAN-DPC算法凭借DBSCAN算法发现初始

类簇的优势,也获得了较优的聚类效果,但将类簇间的部分交叉样本分配错误。PPC和FHC-LDP算法虽然

能识别到右侧的低密度类簇,但它们错误地将该类簇的部分样本划分到高密度类簇中,引发了“多米诺骨牌”
现象。其余算法没有充分考虑样本间的相互关系,无法准确获得类簇的局部结构信息,导致无法成功识别该

数据集的低密度类簇,均取得了较差的效果。

(a) CBDPC (b) DPCSA (d) ICKDP  

(f) PPC (g) DPC
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(e) DBSCAN-DPC (h) DPC-CE

(c) FHC-LDP

图8 算法在D3cno123数据集上的聚类效果
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(g) DPC(e) DBSCAN-DPC (h) DPC-CE

(c) FHC-LDP

图9 算法在Jain数据集上的聚类效果

图9为各算法在Jain数据集上的聚类效果图。该数据集是包含两个类簇的变密度数据集,其类簇又属

于流形结构。由图9可知,CBDPC算法的类簇生长策略可以准确识别两个类簇的结构,获得了完全正确的

聚类结果。FHC-LDP、ICKDP和DBSCAN-DPC算法在该数据集上也取得了与CBDPC算法相同的聚类结

果,而DPCSA、DPC和DPC-CE算法没有充分考虑类簇间的结构差异,且它们定义的样本密度易受不相关

样本的干扰,导致这些算法在该数据集上没有得到正确的类簇中心,聚类效果较差。虽然PPC算法在两个

类簇上都能找到正确的类簇中心,但它的样本分配策略仅从单一近邻的角度进行考虑,未充分考虑待分配样

本周围多个近邻样本的局部信息,导致将下方类簇的部分样本错误分配给了上方类簇,没有得到较优的聚类

结果。
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图10为各算法在Compound数据集上的聚类效果图。该数据集既包含变密度类簇,类簇间又存在相互

交叉的区域,是一个典型的复杂结构数据集。由图10可知,CBDPC算法在该数据集上获得了完全正确的聚

类结果,原因是CBDPC算法通过样本间的近邻、密度和距离关系提出类簇生长策略,以准确获得各个类簇

的基本结构信息;基于边界分配策略将类簇边界或交叉区域的样本成功分配,取得了较好的聚类结果,体现

了CBDPC算法在各种类型数据集上均具有良好的聚类性能。其余算法在该数据集上的聚类效果均比较

差,PPC和DPC-CE算法无法有效聚类左上角的相交类簇,DBSCAN-DPC、FHC-LDP、ICKDP和DPC算法

无法将右侧高低密度相互包含的类簇分离,说明这些算法在聚类过程中未充分考虑样本间的密度因素,无法

排除类簇间交叉样本的影响,导致它们只能聚类一些结构比较简单的数据集。

(a) CBDPC (b) DPCSA (d) ICKDP  

(f) PPC (g) DPC
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(c) FHC-LDP

(h) DPC-CE(e) DBSCAN-DPC

图10 算法在Compound数据集上的聚类效果

图11为各算法在Pathbased数据集上的聚类结果图。该数据集包含3个类簇,类簇间密度差异较大且

存在相互交叉区域,最外层类簇包含流形结构。利用该数据集可进一步展现算法聚类性能。由图11可知,

CBDPC算法取得了最优的聚类结果,获得了各个类簇较为正确的结构信息,且在类簇交叉区域样本分配时

充分考虑样本周围多个近邻的信息,避免了“多米诺骨牌”现象的发生。其余对比算法虽然能准确找到各个

类簇的中心,但它们无法正确处理类簇交叉区域的样本,并将外层流形类簇中的样本错误分配给了内部类

簇,这使得聚类效果不够理想。
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(f) PPC (g) DPC
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图11 算法在Pathbased数据集上的聚类效果

4.3 UCI数据集上的聚类结果及分析

UCI数据集通常有更高的维度和更复杂的类簇结构,有利于验证算法对真实数据的处理能力。表4给

出了CBDPC算法及7种比较算法在UCI数据集上的聚类结果。观察表4可知,CBDPC算法除了在Libras
和Vote数据集获得了第2的聚类效果外,在其余数据集上均获得了最优聚类结果。在Sonar数据集上,

ICKDP算法在NMI上取得了和CBDPC算法相同的结果,但在ARI和AMI上比CBDPC算法差。另外,
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CBDPC算法在所有数据集上NMI、ARI和AMI的平均值较原始DPC算法分别提升了0.098
 

4、0.132
 

5和

0.098
 

8。总之,CBDPC算法考虑样本间的近邻信息和密度关系,使它在 UCI数据集上也表现出卓越的聚

类性能。
表4 UCI数据集上的聚类结果

算法
Vote

NMI ARI AMI Arg-
Libras

NMI ARI AMI Arg-
CBDPC 0.494

 

3 0.571
 

0 0.484
 

8 53 0.667
 

5 0.398
 

1 0.601
 

8 8
DPCSA 0.486

 

7 0.536
 

8 0.476
 

6  0.559
 

5 0.279
 

9 0.424
 

3  
FHC-LDP 0.449

 

9 0.536
 

8 0.417
 

5 14 0.630
 

0 0.337
 

7 0.556
 

1 8
ICKDP 0.575

 

7 0.694
 

9 0.574
 

9 5 0.602
 

3 0.309
 

5 0.524
 

3 10
DBSCAN-DPC 0.480

 

7 0.568
 

0 0.438
 

3 20/0.040 0.671
 

3 0.396
 

4 0.590
 

4 6/0.037
PPC 0.448

 

7 0.550
 

0 0.441
 

8 32 0.662
 

7 0.407
 

9 0.602
 

4 5
DPC 0.469

 

4 0.536
 

7 0.459
 

8 0.23 0.635
 

5 0.350
 

0 0.566
 

8 0.24
DPC-CE 0.456

 

0 0.510
 

1 0.446
 

4  0.590
 

1 0.321
 

5 0.514
 

7  

算法
Wine

NMI ARI AMI Arg-
Sonar

NMI ARI AMI Arg-
CBDPC 0.841

 

7 0.853
 

7 0.835
 

7 15 0.096
 

8 0.129
 

3 0.093
 

5 13
DPCSA 0.564

 

7 0.505
 

4 0.548
 

6  0.062
 

8 0.063
 

0 0.050
 

9  
FHC-LDP 0.743

 

5 0.726
 

9 0.739
 

1 20 0.069
 

6 0.073
 

3 0.065
 

1 5
ICKDP 0.743

 

5 0.726
 

9 0.739
 

1 8 0.096
 

8 -0.002
 

3 0.051
 

2 8
DBSCAN-DPC 0.623

 

3 0.497
 

6 0.462
 

1 6/0.036 0.096
 

3 0.075
 

0 0.062
 

7 13/0.036
PPC 0.825

 

2 0.836
 

8 0.819
 

1 7 0.058
 

2 0.068
 

0 0.054
 

7 13
DPC 0.710

 

4 0.672
 

4 0.706
 

5 1.99 0.066
 

2 0.084
 

4 0.062
 

8 0.08
DPC-CE 0.591

 

1 0.536
 

2 0.584
 

1  0.038
 

0 0.019
 

0 0.031
 

0  

算法
Pima

NMI ARI AMI Arg-
Haberman

NMI ARI AMI Arg-
CBDPC 0.084

 

8 0.123
 

2 0.081
 

5 57 0.037
 

2 0.111
 

2 0.029
 

6 31
DPCSA 0.005

 

2 0.014
 

3 0.001
 

7  0.001
 

6 -0.010
 

5 -0.001
 

0  
FHC-LDP 0.005

 

2 0.014
 

3 0.001
 

7 21 0.022
 

0 0.045
 

2 0.008
 

3 33
ICKDP 0.005

 

2 0.014
 

3 0.001
 

7 11 0.000
 

3 -0.000
 

4 -0.002
 

1 9
DBSCAN-DPC 0.032

 

7 0.086
 

7 0.022
 

8 12/0.030 0.033
 

5 0.029
 

3 0.019
 

9 7/0.0340
PPC 0.052

 

4 0.096
 

1 0.051
 

0 5 0.011
 

8 0.036
 

2 0.008
 

6 16
DPC 0.010

 

4 0.034
 

1 0.006
 

7 0.18 0.004
 

6 0.032
 

0 0.001
 

4 0.5
DPC-CE 0.031

 

8 0.067
 

7 0.023
 

2  0.002
 

0 0.015
 

8 -0.001
 

7  

算法
DNA

NMI ARI AMI Arg-
Heart

NMI ARI AMI Arg-
CBDPC 0.117

 

5 0.092
 

7 0.117
 

5 56 0.235
 

0 0.308
 

8 0.232
 

9 55
DPCSA 0.051

 

8 0.028
 

4 0.051
 

8  0.123
 

5 0.098
 

1 0.097
 

4  
FHC-LDP 0.050

 

0 0.040
 

1 0.050
 

0 32 0.175
 

4 0.207
 

4 0.163
 

1 15
ICKDP 0.023

 

6 0.014
 

2 0.023
 

6 15 0.125
 

9 0.120
 

8 0.106
 

2 9
DBSCAN-DPC 0.088

 

9 0.065
 

0 0.088
 

9 4/0.0280 0.144
 

6 0.149
 

3 0.102
 

9 7/0.040
PPC 0.035

 

9 0.053
 

5 0.033
 

1 1 0.192
 

0 0.245
 

7 0.184
 

9 6
DPC 0.047

 

1 0.077
 

7 0.043
 

3 0.06 0.134
 

6 0.178
 

4 0.129
 

4 0.17
DPC-CE 0.009

 

5 0.028
 

9 0.009
 

5  0.154
 

2 0.172
 

3 0.139
 

4  

算法
Seeds

NMI ARI AMI Arg-
Thyroid

NMI ARI AMI Arg-
CBDPC 0.788

 

9 0.814
 

2 0.784
 

8 15 0.711
 

4 0.798
 

9 0.684
 

9 59
DPCSA 0.715

 

1 0.723
 

6 0.706
 

4  0.351
 

7 0.318
 

5 0.231
 

4  
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FHC-LDP 0.728
 

6 0.763
 

5 0.725
 

6 24 0.394
 

0 0.370
 

1 0.363
 

3 4
ICKDP 0.741

 

0 0.788
 

0 0.738
 

1 10 0.431
 

3 0.424
 

0 0.319
 

4 9
DBSCAN-DPC 0.725

 

1 0.739
 

8 0.718
 

5 11/0.040 0.415
 

5 0.509
 

3 0.369
 

5 6/0.025
PPC 0.732

 

0 0.766
 

0 0.727
 

0 16 0.506
 

2 0.574
 

9 0.443
 

1 4
DPC 0.742

 

4 0.745
 

5 0.736
 

6 0.06 0.270
 

8 0.165
 

3 0.246
 

1 1.30
DPC-CE 0.698

 

9 0.741
 

6 0.695
 

2  0.173
 

6 0.157
 

4 0.151
 

8  

4.4 统计检验

利用Friedman检验和Nemenyi后续检验[23]验证算法之间的聚类结果是否有显著性差异。Friedman
检验作为一种无参数检验方法,它的原假设为各算法间没有显著性差异。由此,首先计算各算法在所有数据

集上所得聚类指标的秩均值,值越小说明算法聚类效果越好,秩均值具体结果列于表5中,最小和次小秩均

值分别用黑体和下划线进行标注。
表5 算法秩均值

秩均值 NMI ARI AMI

CBDPC 1.403
 

8 1.384
 

6 1.384
 

6

DPCSA 6.038
 

5 6.384
 

6 6.038
 

5

FHC-LDP 3.807
 

7 3.826
 

9 3.692
 

3

ICKDP 4.519
 

2 5.000
 

0 4.692
 

3

DBSCAN-DPC 3.673
 

1 3.846
 

2 4.173
 

1

PPC 4.615
 

4 4.000
 

0 4.346
 

2

DPC 5.192
 

3 4.961
 

5 5.076
 

9

DPC-CE 6.570
 

0 6.596
 

2 6.596
 

2

然后,利用式(17)和式(18)分别计算各个聚类指标上的Friedman统计量和F 分布值:

τχ2 =
12w

h(h+1)∑
h

i=1
z2i -

h(h+1)2

4
■
■

—— ■
■

——   , (17)

τF =
(w-1)τχ2

w(h-1)-τχ2
  , (18)

其中,h(h=8)代表算法数量,w(w=26)代表数据集的数量,zi 代表各算法在数据集上所得聚类指标的秩

均值。

τχ2 服从自由度为h-1=7的χ2分布,τF 服从自由度为(h-1,(h-1)(w-1))=(7,175)的F 分布,
由临界值表可知,当显著性水平α=0.1时,F 分布的临界值为1.751

 

4。对于NMI指标,由式(17)和式(18)
可以得到其τχ2 =80.910

 

3,τF =20.009
 

5;对于ARI指标,由式(17)和式(18)可以得到其τχ2 =83.394
 

2,

τF =21.143
 

3;对于AMI指标,由式(17)和式(18)可以得到其τχ2 =76.349
 

4,τF =18.066
 

5。由于NMI、

ARI和AMI的τF 均大于1.751
 

4,因此拒绝Friedman检验的原假设,说明各个算法之间存在显著性差异。
在上述基础上,使用Nemenyi后续检验,验证算法两两之间是否存在显著性差异。Nemenyi后续检验

利用式(19)计算临界值域(Critical
 

Difference,
 

CD):

CD=qα(h(h+1)
6w )1

/2

  , (19)

其中,显著水平α=0.1,算法数量h=8,数据集数量w=26,查表可知临界值qα 为2.780,由此可得CD=
1.888

 

6。
若算法两两之间的秩均值之差小于CD值,则说明在该聚类指标上算法间无显著性差异。图12给出了

在各个聚类指标上的Nemenyi后续检验结果图。
图12中,若算法被线段相连,说明算法之间没有显著性差异,否则就存在显著性差异。观察表5和图
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12可知,CBDPC算法在各个聚类指标上的秩均值均小于对比算法,且与对比算法之间没有线段相连。该结

果表明,CBDPC算法的聚类结果在8种算法中是最优的,且与其它对比算法两两之间存在显著性差异。通

过统计检验,进一步表明了CBDPC算法聚类性能的优越性。

CD=1.888 6
1 2 3 4 5 6 7 8

DPC-CE:6.75
DPCSA:6.038 5
DPC:5.192 3
PPC:4.615 4ICKDP:4.519 2

FHC-LDP:3.807 7
DBSCAN-DPC:3.673 1

CBDPC:1.403 8

CD=1.888 6
1 2 3 4 5 6 7 8

DPC-CE:6.596 2
DPCSA:6.384 6
ICKDP:5
DPC:4.961 5PPC:4

DBSCAN-DPC:3.846 2
FHC-LDP:3.826 9

CBDPC:1.384 6

CD=1.888 6
1 2 3 4 5 6 7 8

DPC-CE:6.596 2
DPCSA:6.038 5
DPC:5.076 9
ICKDP:4.692 3PPC:4.346 2

DBSCAN-DPC:4.173 1
FHC-LDP:3.692 3

CBDPC:1.384 6

(a) NMI指标上的统计检验 (b) ARI指标上的统计检验 

(c) AMI 指标上的统计检验 
图12 CBDPC算法统计检验

4.5 参数分析

通常情况下,参数对算法的聚类性能有很大影响,首先讨论参数k的取值对CBDPC算法的影响。为了

展示在不同参数取值下,CBDPC算法聚类指标值的变化情况,选取Thyroid、DS850、2d4c2、R15、Compound
和Heart数据集作为实验数据集,并在[5,60]内遍历k 值,得到CBDPC算法的参数分析图,如图13所示。
由图13可知,CBDPC算法在给定范围内可以取到最优的聚类指标值,但在一些数据集上参数取值过大或者

过小都会显著降低聚类性能,这说明不同的参数取值对算法的聚类性能有一定影响。

(a) NMI指标上的参数分析 (b) ARI指标上的参数分析 (c) AMI指标上的参数分析 

5 10 20 30 40 50 60
k

0

0.2

0.4

0.6

0.8

1.0

N
M

I

2d4c2

Compound

DS850

Heart

R15

Thyroid

5 10 20 30 40 50 60
k

0

0.2

0.4

0.6

0.8

1.0

A
RI

2d4c2

Compound

DS850

Heart

R15

Thyroid

5 10 20 30 40 50 60
k

0

0.2

0.4

0.6

0.8

1.0

A
M

I

2d4c2

Compound

DS850

Heart

R15

Thyroid

图13 CBDPC算法参数分析

事实上,式(10)中的系数α1 和式(11)中的系数α2 对所提算法性能也有一定影响。下面进行消融实验,
验证文中设置系数α1=0.8和α2=1.5的有效性。消融实验选用D13、Compound、Seeds和Thyroid数据

集,算法在各个数据集上的近邻值k 均为最优配置,并使用NMI、ARI和AMI表示算法性能。首先,固定

α2=1.5,α1 在[0.6,1.0]内取值,步长为0.1,图14给出了不同α1 取值下CBDPC算法的聚类性能。然后,
固定α1=0.8,α2 在[1.0,1.7]内取值,步长为0.1,图15给出了在不同α2 取值下CBDPC算法的聚类性能。

(a) NMI指标上的消融实验 (c) AMI指标上的消融实验 (b) ARI指标上的消融实验

D13 Compound Seeds Thyroid
Datasets
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0.8
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D13 Compound Seeds Thyroid
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图14 不同α1 取值下CBDPC算法的聚类性能
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(a) NMI指标上的消融实验 (c) AMI指标上的消融实验 (b) ARI指标上的消融实验
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图15 不同α2 取值下CBDPC算法的聚类性能

观察图14和图15可以发现,当系数α1=0.8和α2=1.5时,对应图14中第3条形图和图15中的第6
条形图,算法在各个数据集上可以取得最优聚类指标值。上述现象验证了文中所选系数的有效性。

4.6 运行效率分析

除了聚类性能以外,算法运行效率也是非常重要的。为了比较各算法之间的运行效率,表6给出了各算

法在所有数据集上的运行时间。为保持公平性,算法在每个数据集上进行实验时均采用最优参数配置,并重

复实验10次取平均值得到算法运行时间。表6中,各个数据集上的最短时间和次短时间分别采用黑体和下

划线表示。
表6 算法在所有数据集上的运行时间 单位:s

数据集
运行时间

CBDPC DPCSA FHC-LDP ICKDP DBSCAN-DPC PPC DPC DPC-CE

2d4c2 0.264 1.826 0.021 0.325 0.202 0.221 0.091 18.219
Ls 0.745 4.448 0.817 0.180 0.339 0.244 1.168 214.018

Donut2 0.297 2.512 0.305 0.703 0.220 0.194 0.790 25.373
Complex9 2.150 7.712 0.918 3.139 1.680 1.313 1.328 3.378×103

DB 0.226 1.958 0.004 0.150 0.090 0.172 0.064 4.422
R15 0.196 2.378 0.051 0.230 0.104 0.210 0.075 1.814
D13 0.162 2.854 0.056 0.169 0.083 0.210 0.074 2.293
Xclara 2.224 5.94 0.159 3.103 0.562 0.277 1.414 5.950
DS850 0.250 1.785 0.007 0.135 0.134 0.215 0.088 13.736
D3cno123 0.211 1.164 0.016 0.155 0.112 0.192 0.076 8.170
Compound 0.117 1.512 0.015 0.084 0.053 0.275 0.074 0.949
Pathbased 0.100 0.828 0.031 0.065 0.075 0.196 0.092 0.572
Complex8 1.542 4.772 0.125 1.559 0.423 0.253 0.591 896.608
Jain 0.107 1.163 0.002 0.075 0.073 0.180 0.054 0.777
S1 5.130 5.041 0.352 4.856 4.642 0.542 1.276 1.034×104

Disk6000n 8.918 6.141 0.555 3.373 4.883 1.106 2.025 2.752×104

Libras 0.142 0.954 0.005 0.079 0.081 0.222 0.065 0.167
Wine 0.093 0.568 0.002 0.036 0.078 0.188 0.046 0.143
Sonar 0.132 0.846 0.003 0.038 0.089 0.179 0.053 0.130
Pima 0.210 0.899 0.014 0.002 0.216 0.199 0.059 1.784

Haberman 0.097 0.793 0.002 0.047 0.076 0.187 0.050 0.383
DNA 2.140 6.006 0.115 2.587 0.744 0.234 0.240 2.385
Heart 0.384 1.251 0.002 0.106 0.079 0.198 0.069 0.156
Seeds 0.095 1.605 0.002 0.037 0.068 0.214 0.044 0.232
Thyroid 0.103 1.344 0.002 0.033 0.095 0.171 0.043 0.285
Vote 0.450 0.993 0.007 0.056 0.104 0.195 0.043 0.152

平均时间 1.019 2.588 0.138 0.820 0.589 0.300 0.384 1
 

631.989
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从表6可知,CBDPC算法运行效率优于DPCSA和DPC-CE算法,与ICKDP算法接近,比FHC-LDP、

DBSCAN-DPC、DPC和PPC算法的运行效率低。具体而言,CBDPC算法在大部分数据集上的运行时间少

于DPCSA和DPC-CE算法,这是由于DPCSA和DPC-CE算法在计算样本密度和实施样本分配时耗费了

大量时间,导致它们的聚类效率不高。鉴于所对比的FHC-LDP、ICKDP和PPC算法为基于DPC算法的快

速算法,它们具有较优的运行效率,在样本规模较大的数据集(S1和Disk6000n数据集)上所提CBDPC算法

与上述快速算法有一定差距,但在一些样本规模较小的数据集(2d4c2、Jain和Seeds等数据集)上,所提算法

运行效率与上述快速算法相当。总的来说,CBDPC算法的运行效率弱于除了DPCSA和DPC-CE算法以外

的其它算法,原因在于CBDPC算法需要计算样本间的吸引度,并综合考虑样本间的近邻、密度和距离关系

进行类簇生长;在样本分配阶段,CBDPC算法需要利用边界样本周围多个样本的信息进行分配。虽然上述

流程使得CBDPC算法在运行效率上有所损失,但算法的聚类性能也有所提高。

5 结束语

为了解决DPC算法在变密度数据集等复杂结构数据集上聚类效果不佳且在样本分配过程中容易发生

“多米诺骨牌”现象等问题,提出CBDPC算法。CBDPC算法基于样本的k 近邻信息定义密度和相对距离,
进一步计算得到决策值,依次选取决策值最高样本作为类簇中心,并根据样本间的近邻、密度和距离关系从

类簇中心出发不断生长当前类簇,直到完成所有类的类簇生长,获得初始聚类结果;针对类簇生长策略后仍

未分配的边界样本,定义它们与已分配类簇间的邻接度,据此将其依次分配到最合适的类簇中,获得最终聚

类结果。在人工数据集和UCI数据集上的实验结果表明,CBDPC算法可以解决DPC及其改进算法存在的

问题,在各种类型的数据集上聚类性能优越,且实验结果较对比算法在统计学上具有显著性差异。然而,

CBDPC算法需要输入事先给定参数值k,且算法的时间复杂度较高,如何根据数据集自身信息选择最优参

数,并提高算法的运行效率将是下一步的研究重点。
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