DOI: 10.13595/j.cnki.issn1000-0720.2024120903

QuEChERS一高效液相色谱法测定土壤中8种苯并噻唑类污染物

王 磊*1,汪蓓蓓¹,胡婉婉¹,赵 宽²

(1. 滁州职业技术学院食品与环境工程学院, 滁州 239000; 2. 安庆师范大学资源环境学院, 安庆 246133)

摘 要:建立了QuEChERS结合高效液相色谱同时检测土壤中8种苯并噻唑类污染物的方法。样品 经甲醇-四氢呋喃混合溶剂提取和C18净化;以甲醇和水为流动相,Agilent ZORBAX SC-C18色谱柱 (4.6 mm×250 mm, 5 μm)分离;在250 nm和270 nm波长下定量分析。结果表明,8种物质在各自的浓度 范围内线性关系良好,相关系数(r²)≥0.9992,方法的检出限(LOD)为0.03~0.18 mg/kg,定量限(LOQ)为 0.08~0.54 mg/kg,不同水平下的加标回收率为82.9%~99.9%,相对标准偏差(RSD)为1.0%~4.2%。该方法 适用于土壤中苯并噻唑类污染物的监测与分析。

关键词: QuEChERS; 高效液相色谱; 土壤; 苯并噻唑

中图分类号: 0657.7 文献标识码: A 文章编号: 1000-0720(2025)06-0856-07

Determination of 8 benzothiazoles bontaminants in soil by QuEChERS-high performance liquid chromatography

WANG Lei^{*1}, WANG Beibei¹, HU Wanwan¹, ZHAO Kuan² (1. Department of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, China; 2. School of Resource and Environment, Anqing Normal University, Anqing 246133, China)

Abstract: A novel method for the simultaneous determination of eight benzothiazole contaminants in soil was developed using QuEChERS extraction coupled with high-performance liquid chromatography (HPLC). Soil samples were extracted with a methanol-tetrahydrofuran mixed solvent system, followed by purification through C18 adsorbent. Chromatographic separation was achieved on an Agilent ZORBAX SC-C18 column (4.6 mm × 250 mm, 5 μ m) with a methanol-water mobile phase, and detection was performed at dual wavelengths of 250 nm and 270 nm. The method validation demonstrated excellent linearity for all 8 analytes across their respective concentration ranges, with correlation coefficients (r^2) exceeding 0.9992. The method exhibited detection limits (LODs) ranging from 0.03 to 0.18 mg/kg and quantification limits (LOQs) between 0.08 and 0.54 mg/kg. Spiked recovery studies showed satisfactory results, with recoveries ranging from 82.9% to 99.9% and relative standard deviations (RSDs) within 1.0% to 4.2%. This optimized method provides a reliable approach for the monitoring and quantitative analysis of benzothiazole pollutants in soil matrices.

Keywords: QuEChERS; high performance liquid chromatography; soil; benzothiazole

苯并噻唑类物质(BTs)是一类分子结构中具有 1,3-噻唑环与苯环稠合的芳香烃类化合物,在工业 生产和家庭生活中广泛使用^[1-3]。BTs 具有良好的 化学稳定性和抗生物降解性,能在生物体内不断积 累^[4-5],严重影响人体健康,已成为新兴的环境污染 物。因此,研究BTs分析检测方法,有利于及时了

收稿日期: 2024-12-09;修回日期: 2025-01-21

基金项目:安徽省高校自然科学研究项目(2024AH040203, KJ2021A1406)和滁州职业技术学院教师赴行业企业挂职实践 计划项目(xjgz2024019)资助

^{*} 通信作者: 王 磊, 男(1983-), 硕士, 副教授。研究方向: 色谱分析方法, stone@vip.qq.com

解其环境行为以及对其风险防控进行提前干预。

目前,测定 BTs 的方法主要有高效液相色谱 法^[6]、液相色谱-串联质谱法^[7-8]和气相色谱-串联质 谱法^[9],研究的环境介质主要以大气和水为主,而 土壤中 BTs 的检测报道并不多,且检测的 BTs 种类 也较少。QuEChERS 前处理方法具有快速、简易、 廉价、有效、稳定和安全等优点,已被应用于土壤 介质的分析与检测^[10]。

本研究使用改进的QuEChERS 方法结合高效 液相色谱,建立了一种同时测定土壤中8种BTs的 分析方法。该方法操作简便、灵敏度高、结果准确 度高、重复性好,可用于土壤中多种BTs的快速筛 查,为土壤污染预防和治理提供技术参考。

1 实验部分

1.1 仪器与试剂

Agilent 1260 高效液相色谱仪(美国Agilent 公司); Agilent ZORBAX SC-C18色谱柱(4.6 mm× 250 mm, 5 μm); Agilent Poroshell 120 EC-C18色谱 柱(4.6 mm×250 mm, 4 μm); UV-1800PC-DS2紫外-可见分光光度计(上海美谱达仪器公司); LDS-20超 纯水机(上海路岛分析仪器公司)。

苯并噻唑标准品: 2-氨基苯并噻唑(2-Benzothiazolamine, NBT, 纯度97%)、2-羟基苯并噻唑(2-Hydroxybenzothiazole, OBT, 纯度98%)、2-羟基苯并噻唑(2-Hydroxybenzothiazole, OBT, 纯度98%)、2-甲基苯并噻唑(2-Methylbenzothiazole, MBT, 纯度98%)、2-氯苯并 噻唑(2-Methylbenzothiazole, MBT, 纯度98%)、2-氯苯并 噻唑(2-Chlorobenzothiazole, CBT, 纯度98%)、2,5-二 甲基苯并噻唑(2,5-dimethylbenzothiazole, DMBT, 纯 度97%)、2-甲硫基苯并噻唑(2-Methylthiobenzothiazole, MSBT, 纯度98%)和二硫化二苯并噻唑(Dibenzothiazole, MSBT, 纯度98%)]; 三乙胺、甲酸、 NaH₂PO₄和Na₂HPO₄(分析纯,上海阿拉丁生化科技 公司); 实验用水为超纯水; PSA, C18和GCB吸附 剂(常德比克曼生物科技公司)。

1.2 溶液配制

标准溶液:称取约15.0 mg的BTs标准品(其中液体标准品BT,MBT和CBT称取约28.0 mg)于50 mL容量瓶中,加入5 mL四氢呋喃溶解,用甲醇定容至刻度,得到BTs标准储备液;使用时根据需要,将标准储备液逐级稀释,得到混合标准工作溶液。

空白基质溶液:取空白土壤样品,以样品前处 理方法中的提取液为空白土壤基质溶液,将混合 标准储备液稀释成相应浓度的系列混合标准工作溶液。

磷酸盐缓冲溶液(pH 7.4):分别称取0.57g NaH₂PO₄和2.88gNa₂HPO₄于500mL容量瓶中,用 水定容,备用。

1.3 样品制备

土壤样品经风干研碎后过50目筛;取0.5g于 10mL比色管中,加入1mL磷酸盐缓冲溶液,500r/min 涡旋振荡5min;再加入4mL甲醇-四氢呋喃(9:1, V/V)混合溶剂,继续振荡3min,超声提取10min; 将溶液转移至离心管中,5000r/min离心2min; 离心后的土样,重复上述提取操作1次,合并上 层清液。取8mL上层清液于离心管中,分别加入 1200mg无水MgSO4、100mgC18吸附剂,涡旋振荡 3min,5000r/min离心2min;吸取上层清液5mL, 30℃下氮吹至体积为1mL,经0.45µm微孔有机 滤膜过滤,待分析。

1.4 仪器条件

ZORBAX SC-C18色谱柱(4.6 mm × 250 mm, 5 μm); 流动相: A相为超纯水, B相为甲醇;梯度洗脱: 0~3 min, 55%~65%B,流速1.0 mL/min; 3~4 min, 65%~70%B,流速1.0 mL/min; 4~8.5 min, 70%B, 流速1.0~1.1 mL/min; 8.5~11.5 min, 70%~90%B,流 速1.1~1.2 mL/min; 11.5~12.5 min, 90%~100%B,流 速1.2 mL/min; 保持5 min。检测波长为250 nm和 270 nm; 柱温: 25 °C; 进样量: 10 μL。

2 结果与讨论

2.1 色谱条件优化

2.1.1 检测波长 分别取适量的 8 种 BTs 溶解在甲醇中,在190~400 nm 范围内进行紫外光谱扫描,其紫外吸收曲线如图 1 所示。结果显示,8 种 BTs 物质分别在 217~223 nm,242~252 nm 及 262~278 nm 范围内有最大吸收波长。考虑到在 217~223 nm 波 长范围内溶剂的紫外吸收会对 BTs 的分析产生干扰,同时兼顾各种物质的分析灵敏度,实验选择在 250 nm 和 270 nm 2 个波长下进行检测。其中 MSBT 和 MBTS 在波长 270 nm 下进行检测。

2.1.2 色谱柱和柱温 比较了 8种 BTs 在 ZORBAX SC-C18色谱柱(4.6 mm × 250 mm, 5 μm)和Poroshell 120 EC-C18色谱柱(4.6 mm × 250 mm, 4 μm)上的分离效果。结果显示,相对于ZORBAX SC-C18色谱柱,虽然 8种物质在 Poroshell 120 EC-C18色谱柱上的保留时间均有所缩短,但NBT和OBT以及 CBT

Fig.1 UV absorption spectra of the 8 BTs substances

和DMBT的分离度小于1.5,无法有效分离,故选择 ZORBAX SC-C18色谱柱对目标物进行分离。比较 了柱温在20,25,35℃时各物质的分离效果。结 果显示,柱温对8种物质保留时间的影响并不明显, 柱温从25℃升至35℃时,各物质的保留时间缩 短了约0.3 min;但随着柱温升高,MBTS的峰型明 显变宽,峰高变低,这极有可能和杂质峰重合,影 响分析结果的准确性。故选择柱温25℃时进行分 离,8种BTs在250和270 nm波长下的色谱图如图2 所示。

1–NBT; 2–OBT; 3–BT; 4–MBT; 5–CBT; 6–DMBT; 7–MSBT; 8–MBTS

2.1.3 流动相 考察了以甲醇-水和乙腈-水为流 动相时的分离效果。结果显示,使用乙腈-水为流 动相时,8种BTs的保留时间均明显缩短,但NBT, OBT和BT以及CBT, DMBT和MSBT均不能有效分 离,因此选择使用甲醇-水为流动相。同时考察了

在水相中分别添加不同量的三乙胺和甲酸时各物质的分离效果,结果发现,流动相中添加少量的三乙胺和甲酸对各物质峰型的影响并不显著。但当水相pH<6时,NBT的保留时间明显缩短,这可能是NBT分子中的氨基在此环境与质子结合,主要以离子的形式存在于溶液中,降低了其与色谱柱固定相的作用力,容易被流动相洗脱所致;而当pH>9时,MSBT的保留时间虽然缩短,却出现了不规则的分裂峰且峰型明显变宽。因此,为稳定各物质的分离效果,实验选择甲醇和纯水作为流动相。

2.2 样品前处理条件优化

2.2.1 样品溶剂 比较了8种BTs在甲醇、乙腈和 四氢呋喃中的溶解性。结果显示,除MBTS外,其 它各物质在甲醇和乙腈中均具有良好的溶解性,而 MBTS在四氢呋喃中具有良好的溶解性。因此,在 配制标准溶液时,先使用少量的四氢呋喃溶解所有 物质,再用指定溶剂定容,其中四氢呋喃与指定溶 剂的体积比为1:9。同时比较了以甲醇-四氢呋喃 (9:1, V/V)、乙腈-四氢呋喃(9:1, V/V)为溶剂时各物 质的色谱分离效果。结果显示,相对于甲醇-四氢 呋喃,使用乙腈-四氢呋喃溶剂时,各物质的灵敏 度较好;但是样品中的杂质信号也十分明显,干扰 了目标物的分离。故选择甲醇-四氢呋喃(9:1, V/V) 为样品溶剂。

2.2.2 缓冲溶液 土壤基质复杂,不同环境下的 土壤酸碱性不同。NBT中因含有氨基易受土壤酸 性的影响,在酸性土壤中会结合质子以离子形式 存在,影响了它在有机溶剂中的提取效果,因此 需先向土壤样品中加入一定量的弱碱性缓冲溶液, 以保证NBT在土壤中以分子形式存在。按照1.3 节方法制备样品,首先使用酸盐缓冲溶液(pH 7.4) 对样品进行处理,结果表明,8种BTs的回收率为 87.4%~96.3%,相对标准偏差(RSD)为0.9%~3.6%, 结果重复性较好。故选择使用磷酸盐缓冲溶液对 土壤样品进行预处理。

2.2.3 提取溶剂体积、提取次数和提取时间 比较了8种BTs在不同提取溶剂体积、提取次数以及提取时间下的提取效果(图3)。按照1.3节方法制备样品,比较了提取溶剂分别为4,5,6mL时的提取效果,结果表明,当提取溶剂为4mL时,8种BTs的回收率达到84.9%~95.0%;随着提取溶剂体积增加,回收率增加并不明显(图3a),故选择提取溶剂体积为4mL。与提取样品1次相比,提取次数为2次时,8种BTs的回收率有明显提高,

图3 (a)提取溶剂体积、(b)提取次数、(c)提取时间和(d)样品量对8种BTs回收率的影响

Fig.3 Effects of (a) extraction solvent volume, (b) extraction frequency, (c) extraction duration and (d) sample weight on the recovery rates of the 8 BTs substances

达到了 87.4%~96.3%(图 3b), 故选择提取次数为 2次。在超声波清洗器(超声频率为40 KHz, 超声 功率为250 W)中, 分别提取5 min和10 min, 图 3c 结果显示, 当超声提取时间为10 min时, 回收率为 86.2%~98.3%, 明显高于5 min。故选择超声提取时 间为10 min。

2.2.4 样品量 制备土壤样品时,样品量也是影响 目标物提取效果和净化效率的重要因素^[11]。土壤 样品量少,基质效应小,有利于目标物的提取和净 化;样品量多,基质效应明显,杂质会干扰目标物 的分析结果。实验比较了样品量分别为0.5g和1.0g 时各物质的提取效果,图3d结果显示,当样品量为 0.5g时,8种BTs的回收率均比1.0g时要高,并且 结果的重复性较好。这可能是因为当样品量太多, 超声提取时土壤在底部沉积较多,提取溶剂无法均 匀渗透到土壤内部进行提取。故选择土壤样品量 为0.5g。

2.2.5 净化条件优化 土壤基质较为复杂,为降低 杂质对目标物分离效果的影响,在制备样品时常使 用吸附剂对样品进行净化。值得注意的是,吸附剂 在清除样品杂质的同时也可能会吸附目标物,导致

其回收率降低。目前, QuEChERS法常用的吸附剂 有PSA, GCB和C18。实验比较了这3种吸附剂对 8种BTs回收率的影响,结果发现, PSA和GCB对 8种BTs的吸附较强,回收率较C18明显降低。因 此选择C18吸附剂净化样品。由于在样品制备时使 用了缓冲溶液,因此在净化时加入无水MgSO4除水 直至提取液澄清透明。实验比较了吸附剂C18的 不同用量(A: 1200 mg 无水 MgSO4+100 mg C18, B: 1200 mg无水 MgSO4+200 mg C18) 对 8种 BTs 回收率 的影响。结果显示,100 mg的C18就能有效吸附提 取8种BTs, 回收率达到86.3%~94.2%; 当吸附剂 C18的用量增加到200 mg时,8种BTs的回收率均 有所下降,其中MBTS的回收率下降明显。这可能 是因为MBTS分子结构较大且对称性较好,使得该 物质表现出更大的非极性,在C18固定相上的吸附 能力更强。实验通过对净化管中的固体吸附剂进 行提取分析验证了这一推测。

2.3 方法学验证

2.3.1 基质效应 实验考察了空白基质溶液的基质效应(ME), ME=(基质匹配曲线斜率--纯溶剂标准曲线斜率)/纯溶剂标准曲线斜率 × 100%, 当ME

值在-20%~20%范围内,基质效应较小可以忽略, 否则基质效应明显^[11],需要考虑使用基质匹配标 准工作曲线进行定量计算。如表1所示,各物质的 ME 值在 -17.6%~6.9% 范围内,基质效应可以忽略。因此,本实验使用纯溶剂配制的标准曲线进行定量分析。

表1 8种BTs的线性方程、相关系数、基质效应、检出限和定量限

 Table 1
 Linear equations, correlation coefficients (r²), matrix effects (ME), limits of detection (LODs) and limits of quantitation (LOQs) of the 8 BTs substances

Compound	Line	ar equation	r^2	Linear range/ (mg/L)	ME/%	LOD/(mg/kg)	LOQ/(mg/kg)
NBT	Standard curve	<i>y</i> =35.3775 <i>x</i> +0.9448	0.9992	0.306-6.12	_	0.12	0.29
	Matrix curve	<i>y</i> =34.0008 <i>x</i> +0.9131	0.9994	0.216-4.32	-3.9		
OBT	Standard curve	y=18.9215x+1.0225	0.9995	0.310-6.20	-	0.11	0.34
	Matrix curve	<i>y</i> =20.2228 <i>x</i> +1.0113	0.9995	0.260-5.20	6.9		
ВТ	Standard curve	y=24.4226x+2.5560	0.9993	0.560-11.3	-	0.18	0.51
	Matrix curve	y=23.7767x-3.6474	0.9999	0.276-5.52	2.7		
MBT	Standard curve	<i>y</i> =26.1119 <i>x</i> +1.5722	0.9994	0.418-8.36	-	0.10	0.39
	Matrix curve	y=26.8562x-0.4938	0.9999	0.216-4.32	2.8		
CBT	Standard curve	<i>y</i> =22.9946 <i>x</i> +1.7232	0.9994	0.570-11.4	-	0.13	0.54
	Matrix curve	y=23.3925x-0.6773	1.0000	0.254-5.08	1.7		
DMBT	Standard curve	y=23.2721x+1.9962	0.9992	0.284-5.68	-	0.05	0.19
	Matrix curve	<i>y</i> =22.1180 <i>x</i> +0.2470	0.9993	0.312-6.24	-5.0		
MSBT	Standard curve	y=36.0940x+1.8664	0.9994	0.300-6.00	-	0.09	0.37
	Matrix curve	y=37.4870x-1.6733	1.0000	0.260-5.20	3.9		
MBTS	Standard curve	y=31.0652x-2.9682	0.9996	0.256-5.12	-	0.03	0.08
	Matrix curve	<i>y</i> =25.6060 <i>x</i> +0.5231	0.9997	0.200-4.00	-17.6		

2.3.2 线性关系、检出限和定量限 按照优化的色 谱条件分析系列标准工作溶液,以8种BTs的质量 浓度(x, mg/L)为横坐标,以8种BTs的峰面积(y) 为纵坐标,绘制标准曲线,结果见表1。8种BTs在 各自的浓度范围内均有良好的线性关系,相关系数 $r^2 \ge 0.9992$ 。采取逐级稀释法计算8种BTs的检出限 (LOD, S/N=3)和定量限(LOQ, S/N=10),结果表明, LOD为 0.03~0.18 mg/kg, LOQ 为 0.08~0.54 mg/kg, 方法具有较高的灵敏度。

2.3.3 回收率和精密度 在空白土壤样品中,按照低、中、高3种加标量分别加入一定量的混合标准工作溶液,按照优化的色谱条件进行分析,每个样品平行测定5次,计算8种BTs的回收率和相对标准偏差(RSD),结果见表2,8种BTs的平均回收率为82.9%~99.9%,RSD为1.0%~4.2%,方法具有较好的准确度和精密度,能满足分析需求。

\mathcal{X}_{2} 0件DIS的凹收华及怕对你准備左 (n =	表2	8种BTs的回收率及相对标准偏差((<i>n=</i> 5	5)
--	----	-------------------	---------------	----

					· /		· · · ·	
Compound	Added/mg -	Found/mg					Average	
		1	2	3	4	5	recovery/%	NSD/%
NBT	0.612	0.556	0.556	0.564	0.573	0.558	91.7	1.3
	1.530	1.412	1.375	1.313	1.339	1.356	88.8	2.8
	3.060	2.973	2.754	2.909	2.835	2.930	94.1	3.0
OBT	0.620	0.579	0.579	0.537	0.548	0.553	90.2	3.4
	1.550	1.453	1.474	1.385	1.437	1.485	93.3	2.7
	3.100	2.937	2.851	2.899	2.889	2.946	93.7	1.3
BT	1.128	0.993	0.989	0.972	0.972	0.989	87.1	1.0
	2.820	2.671	2.499	2.549	2.626	2.520	91.2	2.8
	5.640	5.868	5.606	5.372	5.765	5.572	99.9	3.4

Table 2 The recoveries and relative standard deviations (RSDs) of the 8 BTs substances (n=5)

Compound	Added/mg -			Average	DCD/01			
		1	2	3	4	5	recovery/%	RSD/%
MBT	0.836	0.801	0.828	0.794	0.840	0.809	97.4	2.3
	2.090	1.939	1.916	1.996	1.966	1.904	93.0	1.9
	4.180	4.076	3.948	4.017	4.093	3.975	96.2	1.6
CBT	1.144	1.064	1.077	1.112	1.069	1.125	95.3	2.5
	2.860	2.682	2.747	2.691	2.717	2.765	95.1	1.3
	5.720	5.554	5.405	5.468	5.550	5.436	95.8	1.2
DMBT	0.568	0.517	0.478	0.504	0.482	0.495	87.2	3.2
	1.420	1.297	1.318	1.267	1.323	1.232	90.7	3.0
	2.840	2.692	2.614	2.638	2.669	2.661	93.5	1.1
MSBT	0.600	0.574	0.583	0.569	0.586	0.572	96.1	1.2
	1.500	1.389	1.422	1.467	1.433	1.403	94.8	2.1
	3.000	2.886	2.818	2.866	2.816	2.876	95.1	1.1
MBTS	0.512	0.451	0.433	0.407	0.423	0.410	82.9	4.2
	1.280	1.099	1.047	1.033	1.136	1.081	84.3	3.8
	2.560	1.917	1.823	1.845	1.889	1.954	83.7	2.8

Continued Table 2 (续表2)

2.4 实际样品检测

选取滁州市周边34份土壤样品,按照优化的 色谱条件进行分析,样品主要集中在具有一定规 模的河(湖)水、化学实验室及化工园区附近,样 品深度约为10 cm。结果显示,在工业园区附近的 2份土样中检出MBT,含量为11.7 µg/kg。

3 结论

本研究建立了一种能同时测定土壤中8种 BTs污染物的液相色谱分析方法,优化了样品提 取条件及仪器分析条件。土壤样品经磷酸盐缓 冲溶液处理后,使用甲醇-四氢呋喃(9:1,V/V) 混合溶剂提取,再经C18净化后进行分析。结果 显示,8种BTs在各自的浓度范围内线性关系良 好,r²≥0.9992,加标回收率为82.9%~99.9%, RSD为1.0%~4.2%。该方法操作简单,提取效 率高,重复性好,能满足实际分析需求,为监 测土壤中苯并噻唑类污染物提供了重要的参考 依据。

参考文献

- Liao C Y, Kim U J, Kannan K. A review of environmental occurrence, fate, exposure, and toxicity of benzothiazoles [J]. Environ Sci Technol, 2018, 52(9): 5007.
- [2] Zhao P L, Wang F, Huang W, Chen Q, Liu Z M. Synthesis and Fungicidal activities of novel thioethers containing benzothiazole moiety [J]. Chin J Organic Chem, 2010, 30(10): 158.
 赵培亮, 王 福, 黄 伟, 陈 琼, 刘祖明. 一种结构新颖的苯并噻唑硫醚类化合物的合成及杀菌活性[J]. 有机化学, 2010, 30(10): 158.
- [3] Gill R K, Rawal R K, Bariwal J. Recent advances in the chemistry and biology of benzothiazoles [J]. Arch Pharm, 2015, 348(3): 155.
- [4] Li Y J, Ding W H. Determination of benzotriazole and benzothiazole derivatives in human urine by eco-friendly deep eutectic solvent-based ultrasound-assisted liquid-liquid microextraction followed by ultrahigh performance liquid chromatography quadrupole-time-of-flight mass spectrometry [J]. Environ Pollut, 2021, 284: 117530.
- [5] Liao X L, Zou T, Chen M, Song Y Y, Yang C, Qiu B J, Chen Z F, Tsang S Y, Qi Z H, Cai Z W. Contamination profiles and health impact of benzothiazole and its derivatives in PM2.5 in typical Chinese cities [J]. Sci Total Environ, 2020, 755: 142617.
- [6] Speltinia A, Sturini M, Maraschi F, Porta A, Profumo A. Fast low-pressurized microwave-assisted extraction of benzotriazole,

benzothiazole and benezenesulfonamide compounds from soil samples [J].Talanta, 2016, 147(15): 322.

- [7] Reemtsma T. Determination of 2-substituted benzothiazoles of industrial use from water by liquid chromatography/electrospray ionization tandem mass spectrometry [J]. Rapid Commun Mass Spectrom, 2000, 14(17): 1612.
- [8] Speltini A, Maraschi F, Sturin M, Contini M, Profumo A. Dispersive multi-walled carbon nanotubes extraction of benzenesulfonamides, benzotriazoles, and benzothiazolesfrom environmental waters followed by microwave desorptionand HPLC-HESI-MS/MS [J]. Anal Bioanal Chem, 2017, 409: 6709.
- [9] Wu Z C, Zhu C F, Li X X, Dong L, Du B, Wang W W, Lv M L. Non-target screening and semi-quantitative analysis of organic pollutants in the atmosphere based on GC-QTOF/MS [J]. Environmental Chemistry, 2021, 40(12): 3698. 武姿辰,朱超飞,李晓秀,董 亮,杜 兵,王雯雯,吕美玲.基于GC-QTOF/MS的大气中有机污染物的非靶标筛查及半定量分析[J].环境化学, 2021, 40(12): 3698.
- [10] Shu D, Jiang M, Wu H, Wang L Y, Li H L. Determination of eight antibiotic residues in aquaculture pond sediment by modified QuEChERs method combined with ultra performance liquid chromatograph mass spectrometry [J]. Chin J Anal Lab, 2024, 43(8): 1139.

舒 达, 江 敏, 吴 昊, 王凌宇, 李昊霖. 改良 QuEChERs法联合超高效液相色谱-质谱法测定水产养殖池塘底泥中8 种抗生素残留[J]. 分析试验室, 2024, 43(8): 1139.

[11] Yang Y M, Li J D, Qin S. Simultaneous detection of pesticides and antibiotics residues in soil by QuEChERS/ultra performance liquid chromatographytandem mass spectrometry [J]. J Instru Anal, 2023, 42(7): 808.
 杨艳梅,李晋栋,秦 曙. QuEChERS/超高效液相色谱-串联质谱法同时检测土壤中的农药及抗生素残留[J]. 分析测试 学报, 2023, 42(7): 808.